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Nitropyrene: DNA Binding and Adduct
Formation in Respiratory Tissues
by M. A. Jackson,* L. C. King,t L. M. Ball,*
S. Ghayourmanesh,** A. M. Jeffrey, ** and J. Lewtast§

Binding of 1-nitro (14C)pyrene (NP) or its metabolites to cellular DNA and protein in cultures of rabbit
alveolar macrophages, lung tissue, and tracheal tissue was examined. DNA binding in tracheal tissue (136
+ 18.3 pmole NP/mg DNA) was four to five times the levels measured in either lung tissue (38 ± 9.4 pmole
NP/mg DNA) or macrophages (26 ± 7.5 pmole NP/mg DNA). Adduct analysis of DNA isolated from lung
tissue incubated with 1-nitro[H3]pyrene in vitro resulted in the identification of 2 to 5% of the NP adducts
as C8-deoxyguanosine 1-aminopyrene. NP was also bound to cellular protein in tracheal tissue and lung
tissue, and at a lower level in macrophages. Cocultivation of the macrophages with lung and tracheal
tissue decreased the DNA binding in tracheal tissue by 45%. Following intratracheal instillation of diesel
particles (5 mg) vapor-coated with "C-NP (380 ppm, 0.085 p.Ci/mg) particles into rats, 5-8% of the radio-
activity remained in the lungs after 20 hr. Most of the diesel particles were also deposited in the lung.
Examination of DNA and protein binding in this tissue showed 5 to 12% of the pulmonary "C bound to
protein and no detectable levels of 14C bound to DNA.

Introduction
Polycyclic aromatic hydrocarbons (PAHs) which pol-

lute our atmosphere have been associated with the eti-
ology of human cancer (1). Nitro-substituted PAHs (NO2-
PAH) have been found in extracts from diesel particles
(2-5) and ambient air particulates (6). Many of these
NO2-PAH are mutagenic in mammalian cells (7-10) as
well as in bacteria (8-12) and may, therefore, be a po-
tential risk to human health.
Among these NO2-PAH, 1-nitropyrene (1-NP) has

been found to be a potent bacterial mutagen (12) and
potentially an animal carcinogen (13). This compound
has been identified and quantitated in diesel particle
extracts (3,4) and may be responsible for up to 30% of
the mutagenicity of these extracts (4,14). The bacterial
mutagenicity of 1-NP is believed to result from reduc-
tion to reactive electrophiles which bind to DNA (12,15).
Howard and co-workers (1) have identified one DNA

adduct formed by Salmonella typhimurium from the
reduction of 1-NP as an N-(deoxyguanosin-8-yl)-1-ami-
nopyrene, i.e., C8-deoxyguanosine-1-aminopyrene ad-
duct (C8-dG-AP). They have also shown that some
mammalian enzymes are capable of reducing 1-NP to
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form this same adduct. In addition, mammalian tissues
are capable of oxidizing 1-NP both in vivo (16) and in
vitro (17,18) to metabolites that are themselves muta-
genic. We have shown in an earlier study (19) that rabbit
pulmonary macrophages and tissues activated 1-NP to
DNA-bound adducts.

In this work we evaluate DNA adducts resulting from
the metabolism of 1-NP by mammalian cells and tissues
to see whether and to what extent oxidative metabolism
of 1-NP forms the C8-dG-AP adduct previously char-
acterized as a product of reductive metabolism. Res-
piratory tissue has been selected for this evaluation
because of potential for exposure to 1-NP associated
with diesel particles. In vivo studies have shown that
inhaled diesel particles are readily deposited in the res-
piratory tract (20,21) in particular, in the alveolar mac-
rophages (21,22). Although many of the particles are
rapidly cleared from the lung, a substantial portion re-
main in the lung for a long period (20,22), thus increasing
exposure to compounds associated with the particles.
It has also been shown that both 1-NP and mutagenic
activity were lost from diesel particles after incubation
with pulmonary alveolar macrophages in vitro (23). We
have now used diesel particles vapor-coated with 14C-
labeled 1-NP to study in vivo the fate of 1-NP absorbed
onto diesel particles and evaluate interactions with pul-
monary macromolecules.

Materials and Methods
Chemicals

1-Nitro[4,5,9,10 C'4]pyrene (14C-lNP; 60 mCi/mmole),
1-nitro[3H]pyrene (3H-lNP, 6 Ci/mmole) and unlabeled
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1-nitropyrene (1-NP) were synthesized by Midwest Re-
search Institute (Kansas City, MO). Unlabeled 1-NP
was added to '4C-1NP to adjust the specific activity to
10 mCi/mmole. Diesel particles vapor-coated with '4C-
1NP were prepared at Battelle Columbus Laboratories
(Columbus, OH), by vaporizing '4C-1NP at 275°C onto
a stream of aerosolized diesel particles. The recovered
particles contained 380 ppm nitropyrene and 195,000
dpm/mg particle. All chemicals used in the isolation and
preparation of DNA for adduct analysis were purchased
as follows: chloroform (spectro grade) from Burdick and
Jackson (Muskegon, MI); isoamyl alcohol from Fisher
Scientific (Raleigh, NC); phenol (99 + %) from Aldrich
Chemical Co. (Milwaukee, WI); and enzymes for DNA
hydrolysis from Sigma Chemical Co. (St. Louis, MO)
and Worthington Biochemical Corp. (Freehold, NJ). All
other materials were purchased at the highest available
grade of purity.

In Vitro Tissue Preparation and
Incubation
Rabbit alveolar macrophages, tracheas and lung tis-

sue were obtained from New Zealand White male rab-
bits (1.5-2.0 kg; Dutchland Laboratory Animals, Denver,
PA) following lung lavage (24) and perfusion as de-
scribed previously (19).
Macrophages (0.5 x 10' cells/mL), lung tissue (31.0

+ 4.0 mg/mL), or tracheal tissue (14.0 ± 0.4 mg/mL)
were each incubated separately with 14C-lNP (2 tig/mL)
at 37°C in a humidified atmosphere of 5% CO2 and air
for 20 hr. The culture medium (M-199) contained 10%
heat-deactivated fetal calf serum (FCS), penicillin (100
units/mL), streptomycin (100 ,ug/mL), kanamycin (100
,g/mL), and '4C-lNP (8.1 ,M; 81.0 nCi/mL) dissolved
in DMSO (final concentration 0.5%, Burdick and Jackson
Laboratories, Inc., Muskegon, MI). Macrophages (0.5
x 10' cells/mL), lung tissue (29.0 ± 2.0 mg/mL), and
tracheal tissue (14.0 ± 1.0 mg/ml) were also cocultured
under the same exposure conditions. Each experiment
was repeated three times.

After incubation, the attached macrophages were de-
tached by trypsinization and recovered by centrifuga-
tion at 300g, then lysed with 25 mL lysing buffer (50
mM Tris-HCl, 10 mM EDTA, 1% SDS, pH 8.0). The
lung or tracheal tissues were separated from the culture
medium by filtration through nylon mesh, then homog-
enized in 20 mL of the lysing buffer. A full description
of these procedures has been given by King et al. (19).
Lung tissue (29.0 ± 2.0 ,ug/mL) was also incubated

with 3H-1NP (2 ,ug/mL) as described above to provide
modified DNA of higher specific radioactivity for iden-
tification of the adducts formed.

In Vivo Studies
Male rats (300 g; Sprague-Dawley, Charles River CD-

1, Wilmington, MO) received 14C-NP-coated diesel par-
ticles by intratracheal instillation of 5 mg of particles in

0.2 mL phosphate-buffered saline with 1% Tween 80
under light halothane anesthesia. The animals were
maintained individually in metabolism cages (Nalgene
Co., Rochester, NY) for collection of urine and feces
and received food and water ad libitum.

After 24 hr each animal was anesthetized with ether
and the thoracic cavity opened to expose the lungs. The
lungs were removed en bloc following total exsanguin-
ation of the animal. All vascular and connective tissues
were removed and the lung tissue was placed into a 50-
mL tube on ice. The tissue was thoroughly minced, than
an aliquot (1 g) was weighed out and homogenized in
10 mL lysing buffer.

Quantitation of DNA and Protein Binding
DNA and protein were isolated according to an ex-

traction scheme previously described (25) and illus-
trated in Figure 1. Briefly, protein was extracted from
cellular nucleic acid in the lysates or homogenates with
chloroform:isoamyl alcohol:phenol (CIP, 24:1:25) and
precipitated with acetone. DNA was removed from the
aqueous portion by precipitation with cold ethanol. Re-
sidual protein and RNA were removed by incubation
with proteinase K (1 mg/mL) and NaOH, respectively.
The radioactivity associated with the DNA was deter-
mined by liquid scintillation counting after acid precip-
itation onto glass fiber filters. Radioactivity associated
with protein was determined by liquid scintillation
counting of NaOH digested protein neutralized with HCI.
Total DNA content was measured by the diphenylamine
colorimetric assay (26) and total protein by the Lowry
method (27).

Identification of DNA Adducts
The isolated DNA was redissolved in water and pre-

cipitated with ethanol in presence of sodium acetate
until at least 95% of the radioactivity was precipitable.
The DNA (<1 mg/mL) was dissolved in 10 mM Tris-
HC1-0. 1 M NaCl-5 mM MgCl2 (pH 7.9) and was treated
consecutively with 200 units of DNase I for 2 hr, 5 units
of alkaline phosphatase for 2 hr, 2 units of phosphodi-
esterase I for 4 hr, 2 units phosphodiesterase II for 2
hr, and 5 units of alkaline phosphatase for 2 hr.
The resulting deoxyribonucleosides were then sepa-

rated on a Sephadex LH-20 column. After application
of the sample, the column was washed with water to
remove unmodified deoxyribonucleosides. The modified
adducts were then eluted with methanol and the solvent
evaporated under reduced pressure. The sample was
dissolved in 10 ,uL of methanol containing unlabeled 1-
nitropyrene-modified DNA adducts [prepared accord-
ing to Howard et al. (1)] and was analyzed by HPLC
on a Dupont Instruments Model 850 high-pressure
liquid chromatograph fitted with a Cl8-puBondapak col-
umn (Waters Associates) using a concave gradient
(number 2) from 50 to 100% methanol in water at 50°C
and a flow rate of 1 mL/min. The eluate was monitored
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FIGURE 1. DNA isolation scheme. Protein was removed from cel-
lular nucleic acid by two extractions of the cell lysates or tissue
homogenates with chloroform:isoamyl alcohol:phenol (CIP, 24:1:25).
Protein in the CIP portion was precipitated with acetone and DNA
in the aqueous portion was precipitated with cold ethanol. After
residual protein and RNA were hydrolyzed with proteinase K and
NaOH, respectively, DNA was acid precipitated onto glass fiber
filters and associated radioactivity measured in a liquid scintilla-
tion spectrometer. Samples used for identification ofDNA adducts
were not taken through the hyrolysis procedure, but were pre-
pared directly as described in "Materials and Methods."

at 254 nm, and 1-min fractions were collected then as-

sayed for radioactivity by liquid scintillation counting.

Results
Binding levels of 14C-lNP metabolites to DNA and

protein from respiratory tissues exposed in vivo are

presented in Figure 2. Tracheal tissue exhibited the
highest binding to DNA (Fig. 2A) and protein (Fig. 2B)
in both the separate 20-hr cultures of isolated macro-
phages and lung and tracheal tissue and the cocultured
system.
DNA from lung tissue incubated for 20 hr with 3H-

1NP was hydrolyzed and the resulting deoxyribonu-
cleosides prepared for identification of modified adducts
by high-pressure liquid chromatography as described in
"Materials and Methods." A chromatogram from this
analysis is shown in Figure 3. From 2 to 5% of the total
DNA adducts co-eluted with the synthetic C8-dG-AP
adduct in fraction number 60 (retention time 60 min).
However, the majority (over 90%) of the modified DNA
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FIGURE 2. Binding of 1-nitro[54C]pyrene metabolites to DNA and
protein. Cultures of rabbit alveolar macrophages (0.5 x 10' cells/
mL), lung tissue 31.0 mg/mL), or tracheal tissue (14.0 mg/mL)
were incubated 20 hr in tissue culture media containing 14C-1NP
(8.1 ,uM; 81.0 nCi/mL). Cellular DNA (A) and protein (B) were
isolated for analysis of binding as previously described. Similarly,
rabbit alveolar macrophages (0.5 x 10' cells/mL), lung tissue 29.0
mg/mL) and tracheal tissue (14.0 mg/mL) were co-cultured 20 hr
in media containing '4C-1NP (8.1 ,uM; 81.0 nCi/mL). The cells and
tissues were separated from one another as described and pre-
pared for analysis of DNA and protein binding. Data are presented
as the mean of three experiments ± standard error of the mean.

was not retained on the Sephadex LH-20 column and
therefore was not amenable to HPLC analysis. Of the
material retained on the LH20 column, 30% or more
eluted with the solvent front, and the other two peaks
observed (35 and 94 min) did not correspond to any
synthetic standard currently available.
'4C-lNP vapor-coated onto diesel particles was ad-

ministered to rats by intratracheal instillation to inves-
tigate the binding of 1-NP to respiratory tissue in vivo
in an attempt to more closely model realistic exposure
routes. Results are presented in Figure 4. After 24 hr,
6-8% of the total 14C dose as well as a major portion of
the particles (based on visual inspection) remained in
the lungs. Analysis of DNA and protein binding in the
lung tissue showed that 5 to 13% of the residual pul-
monary 14C (representing 0.6% of the total dose) was
bound to protein, and no detectable 14C was bound to
DNA.

Discussion
Although macrophages and respiratory tissue are

known to be able to metabolize PAH to reactive inter-
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FIGURE 3. Chromatogram of lung DNA adducts fr(
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mediates that bind DNA (28), the metabolis
ing of NO2-PAH have only recently begu
attention. We have previously presente(
clearly show that macrophages and tissu
respiratory tract are capable of binding 1-N
tabolites to DNA and protein (19). We hav
tified one adduct bound to DNA from lung tie
to 3H-1NP.
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FIGURE 4. Disposition of "4C from 1-nitro[l4C]pyrer
onto diesel particles. Rats were treated with 14C-lb
onto diesel particles by intratracheal instillation wi
Animals were maintained for 24 hr after dosing,
were removed and analyzed for total "4C content. D
were isolated and "4C bound to these macromolec
ured as described in "Materials and Methods."

The N-(deoxyguanosin-8-yl)-1-aminopyrene (C8-dG-
AP) adduct, which had previously been identified as the
major DNA adduct formed from 1-NP by Salmonella
typhimurium TA 1538 and by xanthine oxidase (1), was
found to represent a small portion (2-5%) of the total
DNA adducts formed by lung tissue. The majority of
the NP-DNA adducts either did not respond to the
digestive enzyme treatments, or yielded mononucleo-
side products that were not hydrophobic enough to be
retained on the Sephadex LH-20 column. This is in
marked contrast to the xanthine oxidase-catalyzed ad-
ducts, of which more than 80% were extractable and
resolved into the C8-dG-AP adduct, and to the adducts
formed in TA 1538, where the C8-dG-AP adduct was

80 100 the only peak detected by HPLC (1). However, thepresence of even small quantities of C8-dG-AP in mix-
tures of NP-DNA adducts from lung tissue is signifi-

om [ .1-nitro- cant, in that it indicates that some portion of pulmonary
c profile of the metabolism and activation of 1-NP is by reduction of
irolysis ofDNA the nitro function, thus forming a C8-dG type of adduct
NP (8.1 ,uM; 48 that appears to be a characteristic of arylamines acti-
Red as the C8- vated by N-hydroxylation (1).
its 2-5% of the Analysis of binding to DNA and protein from lung

tissue exposed in vivo to 14C-lNP vapor-coated onto
diesel particles showed that a very small portion of the
total radioactivity instilled in the lungs was bound to

3m and bind- protein and that there was no detectable DNA binding.
d

to receive This is significant, however, because less than 10% of
d data that the total activity administered remained in the lung
es from the tissue even though most of the particulate matter was
[P or its me- still present. This indicates that not only is respiratory
se now iden- tissue able to metabolize 1-NP, but that it is capable of
ssue exposed removing it from diesel particles in vivo, as had pre-

viously been demonstrated for pulmonary alveolar mac-
rophages in vitro (23). The majority of NP originally
present on the diesel particles is therefore fully available
for distribution throughout the body and for further
metabolism and possible activation.

t The information we have presented here strongly
suggests that additional studies need to be conducted

lat
J on the metabolism and binding of the NO2 PAH found

lat C in diesel exhaust and urban air. More information is
needed for defining the genotoxic burden of NO2 PAH
in ambient air. Further studies are currently being con-

-24 hours ducted in our laboratories to elucidate better the DNA
and protein binding of 1-NP to tracheal epithelial cells.
In addition, new DNA hydrolysis techniques are being
evaluated to increase total DNA adduct recovery and
identification.

Part of the research described in this article is conducted under
contract to the Health Effects Institute (HEI, #83-23, with the Co-
lumbia University Health Science Center), an organization that sup-
ports the conduct of independent research and is jointly funded by
the United States Environmental Protection Agency (EPA) and au-

ie vapor-coated tomotive manufacturers. Publication here implies nothing about the
iP vapor-coated view of the contents by HEI of its research sponsors. HEI's Health
th the particles. Review Committee may comment at any time and will evaluate the
then the lungs final report of the project.
NA and protein
ules was meas- The work described in this document has also been funded in part

by the U. S. Environmental Protection Agency under Contract 68-
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02-4031 with Environmental Research and Testing, Inc., under co-
operative agreement CR-810849-010 with the Department of Envi-
ronmental Sciences and Engineering, University of North Carolina,
and under assistance agreement X808859 with HEI. The contents,
however, do not reflect the views and policies of the Agency; nor does
mention of trade names or commercial products constitute endorse-
ment or recommendations for use.
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